Sciweavers

Share
CIKM
2010
Springer

Mining topic-level influence in heterogeneous networks

8 years 8 months ago
Mining topic-level influence in heterogeneous networks
Influence is a complex and subtle force that governs the dynamics of social networks as well as the behaviors of involved users. Understanding influence can benefit various applications such as viral marketing, recommendation, and information retrieval. However, most existing works on social influence analysis have focused on verifying the existence of social influence. Few works systematically investigate how to mine the strength of direct and indirect influence between nodes in heterogeneous networks. To address the problem, we propose a generative graphical model which utilizes the heterogeneous link information and the textual content associated with each node in the network to mine topiclevel direct influence. Based on the learned direct influence, a topic-level influence propagation and aggregation algorithm is proposed to derive the indirect influence between nodes. We further study how the discovered topic-level influence can help the prediction of user behaviors. We validate ...
Lu Liu, Jie Tang, Jiawei Han, Meng Jiang, Shiqiang
Added 10 Feb 2011
Updated 10 Feb 2011
Type Journal
Year 2010
Where CIKM
Authors Lu Liu, Jie Tang, Jiawei Han, Meng Jiang, Shiqiang Yang
Comments (0)
books