Sciweavers

Share
JMLR
2006

On Model Selection Consistency of Lasso

10 years 11 months ago
On Model Selection Consistency of Lasso
Sparsity or parsimony of statistical models is crucial for their proper interpretations, as in sciences and social sciences. Model selection is a commonly used method to find such models, but usually involves a computationally heavy combinatorial search. Lasso (Tibshirani, 1996) is now being used as a computationally feasible alternative to model selection. Therefore it is important to study Lasso for model selection purposes. In this paper, we prove that a single condition, which we call the Irrepresentable Condition, is almost necessary and sufficient for Lasso to select the true model both in the classical fixed p setting and in the large p setting as the sample size n gets large. Based on these results, sufficient conditions that are verifiable in practice are given to relate to previous works and help applications of Lasso for feature selection and sparse representation. This Irrepresentable Condition, which depends mainly on the covariance of the predictor variables, states that...
Peng Zhao, Bin Yu
Added 13 Dec 2010
Updated 13 Dec 2010
Type Journal
Year 2006
Where JMLR
Authors Peng Zhao, Bin Yu
Comments (0)
books