Sciweavers

HPCC
2005
Springer

A Multi-scale Computational Approach for Nanoparticle Growth in Combustion Environments

13 years 9 months ago
A Multi-scale Computational Approach for Nanoparticle Growth in Combustion Environments
In this paper a new and powerful computer simulation capability for the characterization of carbonaceous nanoparticle assemblies across multiple, connected scales, starting from the molecular scale is presented. The goal is to provide a computational infrastructure that can reveal through multi-scale computer simulation how chemistry can influence the structure and function of carbonaceous assemblies at significantly larger length and time scales. Atomistic simulation methodologies, such as Molecular Dynamics and Kinetic Monte Carlo, are used to describe the particle growth and the different spatial and temporal scales are connected in a multi-scale fashion so that key information is passed upward in scale. The modeling of the multiple scales are allowed to be dynamically coupled within a single computer simulation using the latest generation MPI protocol within a grid-based computing scheme.
Angela Violi, Gregory A. Voth
Added 27 Jun 2010
Updated 27 Jun 2010
Type Conference
Year 2005
Where HPCC
Authors Angela Violi, Gregory A. Voth
Comments (0)