Sciweavers

Share
KES
2000
Springer

Multi-view face detection using support vector machines and eigenspace modelling

9 years 7 months ago
Multi-view face detection using support vector machines and eigenspace modelling
An approach to multi-view face detection based on head pose estimation is presented in this paper. Support Vector Regression is employed to solve the problem of pose estimation. Three methods, the eigenface method, the Support Vector Machine (SVM) based method, and a combination of the two methods, are investigated. The eigenface method, which seeks to estimate the overall probability distribution of patterns to be recognised, is fast but less accurate because of the overlap of confidence distributions between face and non-face classes. On the other hand, the SVM method, which tries to model the boundary of two classes to be classified, is more accurate but slower as the number of Support Vectors is normally large. The combined method can achieve an improved performance by speeding up the computation and keeping the accuracy to a preset level. It can be used to automatically detect and track faces in face verification and identification systems.
Yongmin Li, Shaogang Gong, Jamie Sherrah, Heather
Added 25 Aug 2010
Updated 25 Aug 2010
Type Conference
Year 2000
Where KES
Authors Yongmin Li, Shaogang Gong, Jamie Sherrah, Heather M. Liddell
Comments (0)
books