Sciweavers

Share
CVPR
2004
IEEE

Multibody Factorization with Uncertainty and Missing Data Using the EM Algorithm

10 years 4 months ago
Multibody Factorization with Uncertainty and Missing Data Using the EM Algorithm
Multibody factorization algorithms [2, 1, 16] give an elegant and simple solution to the problem of structure from motion even for scenes containing multiple independent motions. Despite this elegance, it is still quite difficult to apply these algorithms to arbitrary scenes. First, their performance deteriorates rapidly with increasing noise. Second, they cannot be applied unless all the points can be tracked in all the frames (as will rarely happen in real scenes). Third, they cannot incorporate prior knowledge on the structure or the motion of the objects. In this paper we present a multibody factorization algorithm that can handle arbitrary noise covariance for each feature as well as missing data. We show how to formulate the problem as one of factor analysis and derive an expectation-maximization based maximum-likelihood algorithm. One of the advantages of our formulation is that we can easily incorporate prior knowledge, including the assumption of temporal coherence. We show t...
Amit Gruber, Yair Weiss
Added 12 Oct 2009
Updated 12 Oct 2009
Type Conference
Year 2004
Where CVPR
Authors Amit Gruber, Yair Weiss
Comments (0)
books