Join Our Newsletter

Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Pinyin
i2Cantonese
i2Cangjie
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

STOC

2003

ACM

2003

ACM

We introduce a simple network design game that models how independent selfish agents can build or maintain a large network. In our game every agent has a specific connectivity requirement, i.e. each agent has a set of terminals and wants to build a network in which his terminals are connected. Possible edges in the network have costs and each agent's goal is to pay as little as possible. Determining whether or not a Nash equilibrium exists in this game is NP-complete. However, when the goal of each player is to connect a terminal to a common source, we prove that there is a Nash equilibrium as cheap as the optimal network, and give a polynomial time algorithm to find a (1 + )-approximate Nash equilibrium that does not cost much more. For the general connection game we prove that there is a 3-approximate Nash equilibrium that is as cheap as the optimal network, and give an algorithm to find a (4.65 + )-approximate Nash equilibrium that does not cost much more. Key words. Game Theor...

Related Content

Added |
03 Dec 2009 |

Updated |
03 Dec 2009 |

Type |
Conference |

Year |
2003 |

Where |
STOC |

Authors |
Elliot Anshelevich, Anirban Dasgupta, Éva Tardos, Tom Wexler |

Comments (0)