Join Our Newsletter

Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

STOC

2003

ACM

2003

ACM

We introduce a simple network design game that models how independent selfish agents can build or maintain a large network. In our game every agent has a specific connectivity requirement, i.e. each agent has a set of terminals and wants to build a network in which his terminals are connected. Possible edges in the network have costs and each agent's goal is to pay as little as possible. Determining whether or not a Nash equilibrium exists in this game is NP-complete. However, when the goal of each player is to connect a terminal to a common source, we prove that there is a Nash equilibrium as cheap as the optimal network, and give a polynomial time algorithm to find a (1 + )-approximate Nash equilibrium that does not cost much more. For the general connection game we prove that there is a 3-approximate Nash equilibrium that is as cheap as the optimal network, and give an algorithm to find a (4.65 + )-approximate Nash equilibrium that does not cost much more. Key words. Game Theor...

Related Content

Added |
03 Dec 2009 |

Updated |
03 Dec 2009 |

Type |
Conference |

Year |
2003 |

Where |
STOC |

Authors |
Elliot Anshelevich, Anirban Dasgupta, Éva Tardos, Tom Wexler |

Comments (0)