Join Our Newsletter

Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

ENTCS

2008

2008

Several different uses of Newton's method in connection with the Fundamental Theorem of Algebra are pointed out. Theoretical subdivision schemes have been combined with the numerical Newton iteration to yield fast root-approximation methods together with a constructive proof of the fundamental theorem of algebra. The existence of the inverse near a simple zero may be used globally to convert topological methods like path-following via Newton's method to numerical schemes with probabilistic convergence. Finally, fast factoring methods which yield root-approximations are constructed using some algebraic Newton iteration for initial factor approximations.

Related Content

Added |
10 Dec 2010 |

Updated |
10 Dec 2010 |

Type |
Journal |

Year |
2008 |

Where |
ENTCS |

Authors |
Prashant Batra |

Comments (0)