Sciweavers

Share
SIGIR
2011
ACM

No free lunch: brute force vs. locality-sensitive hashing for cross-lingual pairwise similarity

7 years 9 months ago
No free lunch: brute force vs. locality-sensitive hashing for cross-lingual pairwise similarity
This work explores the problem of cross-lingual pairwise similarity, where the task is to extract similar pairs of documents across two different languages. Solutions to this problem are of general interest for text mining in the multilingual context and have specific applications in statistical machine translation. Our approach takes advantage of cross-language information retrieval (CLIR) techniques to project feature vectors from one language into another, and then uses locality-sensitive hashing (LSH) to extract similar pairs. We show that effective cross-lingual pairwise similarity requires working with similarity thresholds that are much lower than in typical monolingual applications, making the problem quite challenging. We present a parallel, scalable MapReduce implementation of the sort-based sliding window algorithm, which is compared to a brute-force approach on German and English Wikipedia collections. Our central finding can be summarized as“no free lunch”: there ...
Ferhan Ture, Tamer Elsayed, Jimmy J. Lin
Added 17 Sep 2011
Updated 17 Sep 2011
Type Journal
Year 2011
Where SIGIR
Authors Ferhan Ture, Tamer Elsayed, Jimmy J. Lin
Comments (0)
books