Sciweavers

Share
ECCV
2000
Springer

Non-parametric Model for Background Subtraction

9 years 8 months ago
Non-parametric Model for Background Subtraction
Abstract. Background subtraction is a method typically used to segment moving regions in image sequences taken from a static camera by comparing each new frame to a model of the scene background. We present a novel non-parametric background model and a background subtraction approach. The model can handle situations where the background of the scene is cluttered and not completely static but contains small motions such as tree branches and bushes. The model estimates the probability of observing pixel intensity values based on a sample of intensity values for each pixel. The model adapts quickly to changes in the scene which enables very sensitive detection of moving targets. We also show how the model can use color information to suppress detection of shadows. The implementation of the model runs in real-time for both gray level and color imagery. Evaluation shows that this approach achieves very sensitive detection with very low false alarm rates. Key words: visual motion, active and...
Ahmed M. Elgammal, David Harwood, Larry S. Davis
Added 16 Oct 2009
Updated 16 Oct 2009
Type Conference
Year 2000
Where ECCV
Authors Ahmed M. Elgammal, David Harwood, Larry S. Davis
Comments (0)
books