Join Our Newsletter

Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Pinyin
i2Cantonese
i2Cangjie
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

CORR

2008

Springer

2008

Springer

Given a planar graph G, we consider drawings of G in the plane where edges are represented by straight line segments (which possibly intersect). Such a drawing is specified by an injective embedding of the vertex set of G into the plane. Let fix(G, ) be the maximum integer k such that there exists a crossing-free redrawing of G which keeps k vertices fixed, i.e., there exist k vertices v1, . . . , vk of G such that (vi) = (vi) for i = 1, . . . , k. We give examples of planar graphs G along with a drawing for which fix(G, ) = O( n). In fact, such a drawing exists even if it is presupposed that the vertices occupy any prescribed set of points on the boundary of a convex body. We also consider the parameter obf (G) of a graph G which is equal to the maximum number of edge crossings over all straight line drawings of G. We give examples of planar graphs with obf (G) ( 9 4 - o(1))n2 and prove that obf (T) ( 13 8 - o(1))n2 for every triangulation T. We also show that a given triangul...

Related Content

Added |
09 Dec 2010 |

Updated |
09 Dec 2010 |

Type |
Journal |

Year |
2008 |

Where |
CORR |

Authors |
Mihyun Kang, Oleg Pikhurko, Alexander Ravsky, Mathias Schacht, Oleg Verbitsky |

Comments (0)