Sciweavers

Share
BMCBI
2006

Optimized mixed Markov models for motif identification

8 years 8 months ago
Optimized mixed Markov models for motif identification
Background: Identifying functional elements, such as transcriptional factor binding sites, is a fundamental step in reconstructing gene regulatory networks and remains a challenging issue, largely due to limited availability of training samples. Results: We introduce a novel and flexible model, the Optimized Mixture Markov model (OMiMa), and related methods to allow adjustment of model complexity for different motifs. In comparison with other leading methods, OMiMa can incorporate more than the NNSplice's pairwise dependencies; OMiMa avoids model over-fitting better than the Permuted Variable Length Markov Model (PVLMM); and OMiMa requires smaller training samples than the Maximum Entropy Model (MEM). Testing on both simulated and actual data (regulatory cis-elements and splice sites), we found OMiMa's performance superior to the other leading methods in terms of prediction accuracy, required size of training data or computational time. Our OMiMa system, to our knowledge, is...
Weichun Huang, David M. Umbach, Uwe Ohler, Leping
Added 10 Dec 2010
Updated 10 Dec 2010
Type Journal
Year 2006
Where BMCBI
Authors Weichun Huang, David M. Umbach, Uwe Ohler, Leping Li
Comments (0)
books