Optimum Subspace Learning and Error Correction for Tensors

10 years 3 months ago
Optimum Subspace Learning and Error Correction for Tensors
Confronted with the high-dimensional tensor-like visual data, we derive a method for the decomposition of an observed tensor into a low-dimensional structure plus unbounded but sparse irregular patterns. The optimal rank-(R1, R2, ...Rn) tensor decomposition model that we propose in this paper, could automatically explore the low-dimensional structure of the tensor data, seeking optimal dimension and basis for each mode and separating the irregular patterns. Consequently, our method accounts for the implicit multi-factor structure of tensor-like visual data in an explicit and concise manner. In addition, the optimal tensor decomposition is formulated as a convex optimization through relaxation technique. We then develop a block coordinate descent (BCD) based algorithm to efficiently solve the problem. In experiments, we show several applications of our method in computer vision and the results are promising.
Added 29 Sep 2010
Updated 29 Sep 2010
Type Conference
Year 2010
Where ECCV
Comments (0)