Sciweavers

Share
LREC
2010

Parsing to Stanford Dependencies: Trade-offs between Speed and Accuracy

9 years 2 months ago
Parsing to Stanford Dependencies: Trade-offs between Speed and Accuracy
We investigate a number of approaches to generating Stanford Dependencies, a widely used semantically-oriented dependency representation. We examine algorithms specifically designed for dependency parsing (Nivre, Nivre Eager, Covington, Eisner, and RelEx) as well as dependencies extracted from constituent parse trees created by phrase structure parsers (Charniak, Charniak-Johnson, Bikel, Berkeley and Stanford). We found that phrase structure parsers systematically outperform algorithms designed specifically for dependency parsing. The most accurate method for generating dependencies is the Charniak-Johnson reranking parser, with 89% (labeled) attachment F1 score. The fastest methods are Nivre, Nivre Eager, and Covington. When used with a linear classifier to make local parsing decisions, these methods can parse the entire Penn Treebank development set (section 22) in less than 10 seconds on an Intel Xeon E5520. However, this speed comes with a substantial drop in F1 score (about 76% f...
Daniel Cer, Marie-Catherine de Marneffe, Daniel Ju
Added 29 Oct 2010
Updated 29 Oct 2010
Type Conference
Year 2010
Where LREC
Authors Daniel Cer, Marie-Catherine de Marneffe, Daniel Jurafsky, Christopher D. Manning
Comments (0)
books