Sciweavers

Share
CORR
2010
Springer

PCA 4 DCA: The Application Of Principal Component Analysis To The Dendritic Cell Algorithm

10 years 4 months ago
PCA 4 DCA: The Application Of Principal Component Analysis To The Dendritic Cell Algorithm
As one of the newest members in the field of artificial immune systems (AIS), the Dendritic Cell Algorithm (DCA) is based on behavioural models of natural dendritic cells (DCs). Unlike other AIS, the DCA does not rely on training data, instead domain or expert knowledge is required to predetermine the mapping between input signals from a particular instance to the three categories used by the DCA. This data preprocessing phase has received the criticism of having manually over-fitted the data to the algorithm, which is undesirable. Therefore, in this paper we have attempted to ascertain if it is possible to use principal component analysis (PCA) techniques to automatically categorise input data while still generating useful and accurate classification results. The integrated system is tested with a biometrics dataset for the stress recognition of automobile drivers. The experimental results have shown the application of PCA to the DCA for the purpose of automated data preprocessing is...
Feng Gu, Julie Greensmith, Robert Oates, Uwe Aicke
Added 09 Dec 2010
Updated 09 Dec 2010
Type Journal
Year 2010
Where CORR
Authors Feng Gu, Julie Greensmith, Robert Oates, Uwe Aickelin
Comments (0)
books