Sciweavers

DAC
2002
ACM

A physical model for the transient response of capacitively loaded distributed rlc interconnects

14 years 5 months ago
A physical model for the transient response of capacitively loaded distributed rlc interconnects
Rapid approximation of the transient response of high-speed global interconnects is needed to estimate the time delay, crosstalk, and overshoot in a GSI multilevel wiring network. This paper outlines a rigorous and physical solution for transients in a capacitively-loaded distributed rlc interconnect using a convergent series of modified Bessel functions. Compact models for time delay and repeater insertion are derived. The single-line model is extended to evaluate crosstalk in two-coupled lines. These solutions are validated by HSPICE simulation, and have potential applications to rapid rlc timing analysis, global wire sizing and repeater insertion, signal integrity estimation, and reliability modeling (e.g. voltage overshoot and high current density concerns). Categories and Subject Descriptors B.4.3 [Input/Output and Data Communications]: Interconnections (Subsystems) ? physical structures (e.g. backplanes, cables, chip carriers). General Terms Performance, Design, and Verification...
Raguraman Venkatesan, Jeffrey A. Davis, James D. M
Added 13 Nov 2009
Updated 13 Nov 2009
Type Conference
Year 2002
Where DAC
Authors Raguraman Venkatesan, Jeffrey A. Davis, James D. Meindl
Comments (0)