Sciweavers

Share
IJCGA
1998

Polyhedral Assembly Partitioning Using Maximally Covered Cells in Arrangements of Convex Polytopes

8 years 11 months ago
Polyhedral Assembly Partitioning Using Maximally Covered Cells in Arrangements of Convex Polytopes
We study the following problem: Given a collection A of polyhedral parts in 3D, determine whether there exists a subset S of the parts that can be moved as a rigid body by in nitesimal translation and rotation, without colliding with the rest of the parts, A n S. A negative result implies that the object whose constituent parts are the collection A cannot be taken apart with two hands. A positive result, together with the list of movable parts in S and a direction of motion for S, can be used by an assembly sequence planner (it does not, however, give the complete speci cation of an assembly operation). This problem can be transformed into that of traversing an arrangement of convex polytopes in the space of directions of rigid motions. We identify a special type of cells in that arrangement, which we call the maximally covered cells, and we show that it su ces for the problem at hand to consider a representative point in each of these special cells rather than to compute the entire a...
Leonidas J. Guibas, Dan Halperin, Hirohisa Hirukaw
Added 22 Dec 2010
Updated 22 Dec 2010
Type Journal
Year 1998
Where IJCGA
Authors Leonidas J. Guibas, Dan Halperin, Hirohisa Hirukawa, Jean-Claude Latombe, Randall H. Wilson
Comments (0)
books