Join Our Newsletter

Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

DM

2016

2016

We give a new method of generating strongly polynomial sequences of graphs, i.e., sequences (Hk) indexed by a tuple k = (k1, . . . , kh) of positive integers, with the property that, for each ﬁxed graph G, there is a multivariate polynomial p(G; x1, . . . , xh) such that the number of homomorphisms from G to Hk is given by the evaluation p(G; k1, . . . , kh). A classical example is the sequence of complete graphs (Kk), for which p(G; x) is the chromatic polynomial of G. Our construction is based on tree model representations of graphs. It produces a large family of graph polynomials which includes the Tutte polynomial, the Averbouch-GodlinMakowsky polynomial, and the Tittmann-Averbouch-Makowsky polynomial. We also introduce a new graph parameter, the branching core size of a simple graph, derived from its representation under a particular tree model, and related to how many involutive automorphisms it has. We prove that a countable family of graphs of bounded branching core size is ...

Related Content

Added |
01 Apr 2016 |

Updated |
01 Apr 2016 |

Type |
Journal |

Year |
2016 |

Where |
DM |

Authors |
Delia Garijo, Andrew J. Goodall, Jaroslav Nesetril |

Comments (0)