Sciweavers

Share
ECCV
2006
Springer

PoseCut: Simultaneous Segmentation and 3D Pose Estimation of Humans Using Dynamic Graph-Cuts

9 years 11 months ago
PoseCut: Simultaneous Segmentation and 3D Pose Estimation of Humans Using Dynamic Graph-Cuts
Abstract. We present a novel algorithm for performing integrated segmentation and 3D pose estimation of a human body from multiple views. Unlike other related state of the art techniques which focus on either segmentation or pose estimation individually, our approach tackles these two tasks together. Normally, when optimizing for pose, it is traditional to use some fixed set of features, e.g. edges or chamfer maps. In contrast, our novel approach consists of optimizing a cost function based on a Markov Random Field (MRF). This has the advantage that we can use all the information in the image: edges, background and foreground appearances, as well as the prior information on the shape and pose of the subject and combine them in a Bayesian framework. Previously, optimizing such a cost function would have been computationally infeasible. However, our recent research in dynamic graph cuts allows this to be done much more efficiently than before. We demonstrate the efficacy of our approach ...
Matthieu Bray, Pushmeet Kohli, Philip H. S. Torr
Added 16 Oct 2009
Updated 16 Oct 2009
Type Conference
Year 2006
Where ECCV
Authors Matthieu Bray, Pushmeet Kohli, Philip H. S. Torr
Comments (0)
books