The Pre-Image Problem in Kernel Methods

13 years 6 months ago
The Pre-Image Problem in Kernel Methods
In this paper, we address the problem of finding the pre-image of a feature vector in the feature space induced by a kernel. This is of central importance in some kernel applications, such as on using kernel principal component analysis (PCA) for image denoising. Unlike the traditional method in [1] which relies on nonlinear optimization, our proposed method directly finds the location of the pre-image based on distance constraints in the feature space. It is non-iterative, involves only linear algebra and does not suffer from numerical instability or local minimum problems. Evaluations on performing kernel PCA and kernel clustering on the USPS data set show much improved performance.
James T. Kwok, Ivor W. Tsang
Added 17 Nov 2009
Updated 17 Nov 2009
Type Conference
Year 2003
Where ICML
Authors James T. Kwok, Ivor W. Tsang
Comments (0)