Sciweavers

Share
DATAMINE
2010

Predicting labels for dyadic data

8 years 4 months ago
Predicting labels for dyadic data
: In dyadic prediction, the input consists of a pair of items (a dyad), and the goal is to predict the value of an observation related to the dyad. Special cases of dyadic prediction include collaborative filtering, where the goal is to predict ratings associated with (user, movie) pairs, and link prediction, where the goal is to predict the presence or absence of an edge between two nodes in a graph. In this paper, we study the problem of predicting labels associated with dyad members. Special cases of this problem include predicting characteristics of users in a collaborative filtering scenario, and predicting the label of a node in a graph, which is a task sometimes called within-network classification or relational learning. This paper shows how to extend a recent dyadic prediction method to predict labels for nodes and labels for edges simultaneously. The new method learns latent features within a log-linear model in a supervised way, to maximize predictive accuracy for both dyad ...
Aditya Krishna Menon, Charles Elkan
Added 01 Mar 2011
Updated 01 Mar 2011
Type Journal
Year 2010
Where DATAMINE
Authors Aditya Krishna Menon, Charles Elkan
Comments (0)
books