Join Our Newsletter

Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Pinyin
i2Cantonese
i2Cangjie
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

STOC

2003

ACM

2003

ACM

We present a new bicriteria approximation algorithm for the degree-bounded minimum-cost spanning tree problem: Given an undirected graph with nonnegative edge weights and degree bounds Bv > 1 for all vertices v, find a spanning tree T of minimum total edge-cost such that the maximum degree of each node v in T is at most Bv. Our algorithm finds a tree in which the degree of each node v is O(Bv + log n) and the total edge-cost is at most a constant times the cost of any tree that obeys all degree constraints. Our previous algorithm[9] with similar guarantees worked only in the case of uniform degree bounds (i.e. Bv = B for all vertices v). While the new algorithm is based on ideas from Lagrangean relaxation as is our previous work, it does not rely on computing a solution to a linear program. Instead it uses a repeated application of Kruskal's MST algorithm interleaved with a combinatorial update of approximate Lagrangean node-multipliers maintained by the algorithm. These updat...

Added |
03 Dec 2009 |

Updated |
03 Dec 2009 |

Type |
Conference |

Year |
2003 |

Where |
STOC |

Authors |
Jochen Könemann, R. Ravi |

Comments (0)