Sciweavers

Share
ICDE
2006
IEEE

Privacy Preserving Clustering on Horizontally Partitioned Data

9 years 5 months ago
Privacy Preserving Clustering on Horizontally Partitioned Data
Data mining has been a popular research area for more than a decade due to its vast spectrum of applications. The power of data mining tools to extract hidden information that cannot be otherwise seen by simple querying proved to be useful. However, the popularity and wide availability of data mining tools also raised concerns about the privacy of individuals. The aim of privacy preserving data mining researchers is to develop data mining techniques that could be applied on databases without violating the privacy of individuals. Privacy preserving techniques for various data mining models have been proposed, initially for classification on centralized data then for association rules in distributed environments. In this work, we propose methods for constructing the dissimilarity matrix of objects from different sites in a privacy preserving manner which can be used for privacy preserving clustering as well as database joins, record linkage and other operations that require pair-wise co...
Ali Inan, Yücel Saygin, Erkay Savas, Ay&ccedi
Added 11 Jun 2010
Updated 11 Jun 2010
Type Conference
Year 2006
Where ICDE
Authors Ali Inan, Yücel Saygin, Erkay Savas, Ayça Azgin Hintoglu, Albert Levi
Comments (0)
books