A product formula for the TASEP on a ring

3 years 3 months ago
A product formula for the TASEP on a ring
nded abstract Erik Aas∗ and Jonas Sj¨ostrand† Dep. of Mathematics, Royal Institute of Technology, Stockholm, Sweden : For a random permutation sampled from the stationary distribution of the TASEP on a ring, we show that, conditioned on the event that the first entries are strictly larger than the last entries, the order of the first entries is independent of the order of the last entries. The proof uses multi-line queues as defined by Ferrari and Martin, and the theorem has an enumerative combinatorial interpretation in that setting. Finally, we present a conjecture for the case where the small and large entries are not separated. Resum´e: Pour une permutation randomis´ee tir´ee de la mesure stationnaire du TASEP, nous d´emontrons, conditionn´ee `a l’´ev´enement que les pr´emi`eres lettres sont plus grandes que les derni`eres lettres, que l’ordre des petites lettres est ind´ependant de l’ordre des grandes lettres. La preuve utilise les files d’attente multili...
Erik Aas, Jonas Sjöstrand
Added 09 Apr 2016
Updated 09 Apr 2016
Type Journal
Year 2016
Where RSA
Authors Erik Aas, Jonas Sjöstrand
Comments (0)