Join Our Newsletter

Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Pinyin
i2Cantonese
i2Cangjie
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

COCO

2004

Springer

2004

Springer

We study several properties of sets that are complete for NP. We prove that if L is an NP-complete set and S ⊇ L is a p-selective sparse set, then L − S is ≤p m-hard for NP. We demonstrate existence of a sparse set S ∈ DTIME(22n ) such that for every L ∈ NP − P, L − S is not ≤p m-hard for NP. Moreover, we prove for every L ∈ NP − P, that there exists a sparse S ∈ EXP such that L − S is not ≤p m-hard for NP. Hence, removing sparse information in P from a complete set leaves the set complete, while removing sparse information in EXP from a complete set may destroy its completeness. Previously, these properties were known only for exponential time complexity classes. We use hypotheses about pseudorandom generators and secure one-way permutations to resolve longstanding open questions about whether NP-complete sets are immune. For example, assuming that pseudorandom generators and secure one-way permutations exist, it follows easily that NP-complete sets are not ...

Related Content

Added |
01 Jul 2010 |

Updated |
01 Jul 2010 |

Type |
Conference |

Year |
2004 |

Where |
COCO |

Authors |
Christian Glaßer, Aduri Pavan, Alan L. Selman, Samik Sengupta |

Comments (0)