Quadratic Goldreich-Levin Theorems

7 years 9 months ago
Quadratic Goldreich-Levin Theorems
Decomposition theorems in classical Fourier analysis enable us to express a bounded function in terms of few linear phases with large Fourier coefficients plus a part that is pseudorandom with respect to linear phases. The Goldreich-Levin algorithm [GL89] can be viewed as an algorithmic analogue of such a decomposition as it gives a way to efficiently find the linear phases associated with large Fourier coefficients. In the study of “quadratic Fourier analysis”, higher-degree analogues of such decompositions have been developed in which the pseudorandomness property is stronger but the structured part correspondingly weaker. For example, it has previously been shown that it is possible to express a bounded function as a sum of a few quadratic phases plus a part that is small in the U3 norm, defined by Gowers for the purpose of counting arithmetic progressions of length 4. We give a polynomial time algorithm for computing such a decomposition. A key part of the algorithm is a loc...
Madhur Tulsiani, Julia Wolf
Added 19 Aug 2011
Updated 19 Aug 2011
Type Journal
Year 2011
Where CORR
Authors Madhur Tulsiani, Julia Wolf
Comments (0)