Sciweavers

Share
EDBT
2009
ACM

RankClus: integrating clustering with ranking for heterogeneous information network analysis

11 years 8 months ago
RankClus: integrating clustering with ranking for heterogeneous information network analysis
As information networks become ubiquitous, extracting knowledge from information networks has become an important task. Both ranking and clustering can provide overall views on information network data, and each has been a hot topic by itself. However, ranking objects globally without considering which clusters they belong to often leads to dumb results, e.g., ranking database and computer architecture conferences together may not make much sense. Similarly, clustering a huge number of objects (e.g., thousands of authors) in one huge cluster without distinction is dull as well. In this paper, we address the problem of generating clusters for a specified type of objects, as well as ranking information for all types of objects based on these clusters in a multityped (i.e., heterogeneous) information network. A novel clustering framework called RankClus is proposed that directly generates clusters integrated with ranking. Based on initial K clusters, ranking is applied separately, which...
Yizhou Sun, Jiawei Han, Peixiang Zhao, Zhijun Yin,
Added 19 May 2010
Updated 19 May 2010
Type Conference
Year 2009
Where EDBT
Authors Yizhou Sun, Jiawei Han, Peixiang Zhao, Zhijun Yin, Hong Cheng, Tianyi Wu
Comments (0)
books