The recognizability of sets of graphs is a robust property

8 years 8 months ago
The recognizability of sets of graphs is a robust property
Once the set of finite graphs is equipped with an algebra structure (arising from the definition of operations that generalize the concatenation of words), one can define the notion of a recognizable set of graphs in terms of finite congruences. Applications to the construction of efficient algorithms and to the theory of context-free sets of graphs follow naturally. The class of recognizable sets depends on the signature of graph operations. We consider three signatures related respectively to Hyperedge Replacement (HR) context-free graph grammars, to Vertex Replacement (VR) context-free graph grammars, and to modular decompositions of graphs. We compare the corresponding classes of recognizable sets.We show that they are robust in the sense that many variants of each signature (where in particular operations are defined by quantifier-free formulas, a quite flexible framework) yield the same notions of recognizability. We prove that for graphs without large complete bipartite subgrap...
Bruno Courcelle, Pascal Weil
Added 11 Dec 2010
Updated 11 Dec 2010
Type Journal
Year 2006
Where CORR
Authors Bruno Courcelle, Pascal Weil
Comments (0)