Sciweavers

Share
ENTCS
2006

Runtime Verification for High-Confidence Systems: A Monte Carlo Approach

10 years 10 months ago
Runtime Verification for High-Confidence Systems: A Monte Carlo Approach
We present a new approach to runtime verification that utilizes classical statistical techniques such as Monte Carlo simulation, hypothesis testing, and confidence interval estimation. Our algorithm, MCM, uses sampling-policy automata to vary its sampling rate dynamically as a function of the current confidence it has in the correctness of the deployed system. We implemented MCM within the Aristotle tool environment, an extensible, GCC-based architecture for instrumenting C programs for the purpose of runtime monitoring. For a case study involving the dynamic allocation and deallocation of objects in the Linux kernel, our experimental results show that Aristotle reduces the runtime overhead due to monitoring, which is initially high when confidence is low, to levels low enough to be acceptable in the long term as confidence in the monitored system grows.
Sean Callanan, Radu Grosu, Abhishek Rai, Scott A.
Added 12 Dec 2010
Updated 12 Dec 2010
Type Journal
Year 2006
Where ENTCS
Authors Sean Callanan, Radu Grosu, Abhishek Rai, Scott A. Smolka, Mike R. True, Erez Zadok
Comments (0)
books