Sciweavers

Share
AIPR
2003
IEEE

Sensor and Classifier Fusion for Outdoor Obstacle Detection: an Application of Data Fusion To Autonomous Off-Road Navigation

10 years 2 months ago
Sensor and Classifier Fusion for Outdoor Obstacle Detection: an Application of Data Fusion To Autonomous Off-Road Navigation
This paper describes an approach for using several levels of data fusion in the domain of autonomous off-road navigation. We are focusing on outdoor obstacle detection, and we present techniques that leverage on data fusion and machine learning for increasing the reliability of obstacle detection systems. We are combining color and IR imagery with range information from a laser range finder. We show that in addition to fusing data at the pixel level, performing high level classifier fusion is beneficial in our domain. Our general approach is to use machine learning techniques for automatically deriving effective models of the classes of interest (obstacle and non-obstacle for example). We train classifiers on different subsets of the features we extract from our sensor suite and show how different classifier fusion schemes can be applied for obtaining a multiple classifier system that is more robust than any of the classifiers presented as input. We present experimental results we obt...
Cristian Dima, Nicolas Vandapel, Martial Hebert
Added 23 Aug 2010
Updated 23 Aug 2010
Type Conference
Year 2003
Where AIPR
Authors Cristian Dima, Nicolas Vandapel, Martial Hebert
Comments (0)
books