Sciweavers

Share
ICCV
2001
IEEE

Shape Deformation: SVM Regression and Application to Medical Image Segmentation

9 years 9 months ago
Shape Deformation: SVM Regression and Application to Medical Image Segmentation
This paper presents a novel landmark-based shape deformation method. This method effectively solves two problems inherent in landmark-based shape deformation: (a) identification of landmark points from a given input image, and (b) regularized deformation of the shape of an object defined in a template. The second problem is solved using a new constrained support vector machine (SVM) regression technique, in which a thin-plate kernel is utilized to provide non-rigid shape deformations. This method offers several advantages over existing landmark-based methods. First, it has a unique capability to detect and use multiple candidate landmark points in an input image to improve landmark detection. Second, it can handle the case of missing landmarks, which often arises in dealing with occluded images. We have applied the proposed method to extract the scalp contours from brain cryosection images with very encouraging results.
Song Wang, Weiyu Zhu, Zhi-Pei Liang
Added 15 Oct 2009
Updated 15 Oct 2009
Type Conference
Year 2001
Where ICCV
Authors Song Wang, Weiyu Zhu, Zhi-Pei Liang
Comments (0)
books