Smoothed Analysis of Binary Search Trees

8 years 11 months ago
Smoothed Analysis of Binary Search Trees
Binary search trees are one of the most fundamental data structures. While the height of such a tree may be linear in the worst case, the average height with respect to the uniform distribution is only logarithmic. The exact value is one of the best studied problems in averagecase complexity. We investigate what happens in between by analysing the smoothed height of binary search trees: Randomly perturb a given (adversarial) sequence and then take the expected height of the binary search tree generated by the resulting sequence. As perturbation models, we consider partial permutations, partial alterations, and partial deletions. On the one hand, we prove tight lower and upper bounds of roughly Θ( √ n) for the expected height of binary search trees under partial permutations and partial alterations. This means that worst-case instances are rare and disappear under slight perturbations. On the other hand, we examine how much a perturbation can increase the height of a binary search tr...
Bodo Manthey, Rüdiger Reischuk
Added 27 Jun 2010
Updated 27 Jun 2010
Type Conference
Year 2005
Authors Bodo Manthey, Rüdiger Reischuk
Comments (0)