Join Our Newsletter

Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Pinyin
i2Cantonese
i2Cangjie
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

ISAAC

2005

Springer

2005

Springer

Binary search trees are one of the most fundamental data structures. While the height of such a tree may be linear in the worst case, the average height with respect to the uniform distribution is only logarithmic. The exact value is one of the best studied problems in averagecase complexity. We investigate what happens in between by analysing the smoothed height of binary search trees: Randomly perturb a given (adversarial) sequence and then take the expected height of the binary search tree generated by the resulting sequence. As perturbation models, we consider partial permutations, partial alterations, and partial deletions. On the one hand, we prove tight lower and upper bounds of roughly Θ( √ n) for the expected height of binary search trees under partial permutations and partial alterations. This means that worst-case instances are rare and disappear under slight perturbations. On the other hand, we examine how much a perturbation can increase the height of a binary search tr...

Related Content

Added |
27 Jun 2010 |

Updated |
27 Jun 2010 |

Type |
Conference |

Year |
2005 |

Where |
ISAAC |

Authors |
Bodo Manthey, Rüdiger Reischuk |

Comments (0)