Join Our Newsletter

Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Pinyin
i2Cantonese
i2Cangjie
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

ECCC

2010

2010

We consider the reachability problem for a certain class of directed acyclic graphs embedded on surfaces. Let G(m, g) be the class of directed acyclic graphs with m = m(n) source vertices embedded on a surface (orientable or non-orientable) of genus g = g(n). We give a log-space reduction that on input G, u, v where G G(m, g) and u and v are two vertices of G, outputs G , u , v where G is directed graph, and u , v are vertices of G , so that (a) there is a directed path from u to v in G if and only if there is a directed path from u to v in G and (b) G has O(m + g) vertices. By a direct application of Savitch's theorem on the reduced instance we get a deterministic O(log n + log2 (m + g))-space algorithm for the reachability problem for graphs in G(m, g). By setting m and g to be 2O( log n) we get that the reachability problem for directed acyclic graphs with 2O( log n) sources embedded on surfaces of genus 2O( log n) is in L (deterministic logarithmic space). Earlier, in thi...

Added |
02 Mar 2011 |

Updated |
02 Mar 2011 |

Type |
Journal |

Year |
2010 |

Where |
ECCC |

Authors |
Derrick Stolee, N. V. Vinodchandran |

Comments (0)