Sciweavers

Share
AAAI
2015

Stable Model Counting and Its Application in Probabilistic Logic Programming

4 years 10 months ago
Stable Model Counting and Its Application in Probabilistic Logic Programming
Model counting is the problem of computing the number of models that satisfy a given propositional theory. It has recently been applied to solving inference tasks in probabilistic logic programming, where the goal is to compute the probability of given queries being true provided a set of mutually independent random variables, a model (a logic program) and some evidence. The core of solving this inference task involves translating the logic program to a propositional theory and using a model counter. In this paper, we show that for some problems that involve inductive definitions like reachability in a graph, the translation of logic programs to SAT can be expensive for the purpose of solving inference tasks. For such problems, direct implementation of stable model semantics allows for more efficient solving. We present two implementation techniques, based on unfounded set detection, that extend a propositional model counter to a stable model counter. Our experiments show that for p...
Rehan Abdul Aziz, Geoffrey Chu, Christian J. Muise
Added 27 Mar 2016
Updated 27 Mar 2016
Type Journal
Year 2015
Where AAAI
Authors Rehan Abdul Aziz, Geoffrey Chu, Christian J. Muise, Peter James Stuckey
Comments (0)
books