Join Our Newsletter

Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Pinyin
i2Cantonese
i2Cangjie
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

DM

2008

2008

One of the basic results in graph theory is Dirac's theorem, that every graph of order n 3 and minimum degree n/2 is Hamiltonian. This may be restated as: if a graph of order n and minimum degree n/2 contains a cycle C then it contains a spanning cycle, which is just a spanning subdivision of C. We show that the same conclusion is true if instead of C, we choose any graph H such that every connected component of H is non-trivial and contains at most one cycle. The degree bound can be improved to (n-t)/2 if H has t components that are trees. We attempt a similar generalization of the Corr

Related Content

Added |
10 Dec 2010 |

Updated |
10 Dec 2010 |

Type |
Journal |

Year |
2008 |

Where |
DM |

Authors |
Ch. Sobhan Babu, Ajit A. Diwan |

Comments (0)