Sciweavers

Share
CVPR
2012
IEEE

Submodular dictionary learning for sparse coding

7 years 22 days ago
Submodular dictionary learning for sparse coding
A greedy-based approach to learn a compact and discriminative dictionary for sparse representation is presented. We propose an objective function consisting of two components: entropy rate of a random walk on a graph and a discriminative term. Dictionary learning is achieved by finding a graph topology which maximizes the objective function. By exploiting the monotonicity and submodularity properties of the objective function and the matroid constraint, we present a highly efficient greedy-based optimization algorithm. It is more than an order of magnitude faster than several recently proposed dictionary learning approaches. Moreover, the greedy algorithm gives a near-optimal solution with a (1/2)-approximation bound. Our approach yields dictionaries having the property that feature points from the same class have very similar sparse codes. Experimental results demonstrate that our approach outperforms several recently proposed dictionary learning techniques for face, action and obj...
Zhuolin Jiang, Guangxiao Zhang, Larry S. Davis
Added 28 Sep 2012
Updated 28 Sep 2012
Type Journal
Year 2012
Where CVPR
Authors Zhuolin Jiang, Guangxiao Zhang, Larry S. Davis
Comments (0)
books