Sciweavers

Share
AIR
1998

Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis

10 years 1 months ago
Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis
Abstract. Genetic algorithms play a significant role, as search techniques for handling complex spaces, in many fields such as artificial intelligence, engineering, robotic, etc. Genetic algorithms are based on the underlying genetic process in biological organisms and on the natural evolution principles of populations. These algorithms process a population of chromosomes, which represent search space solutions, with three operations: selection, crossover and mutation. Under its initial formulation, the search space solutions are coded using the binary alphabet. However, the good properties related with these algorithms do not stem from the use of this alphabet; other coding types have been considered for the representation issue, such as real coding, which would seem particularly natural when tackling optimization problems of parameters with variables in continuous domains. In this paper we review the features of real-coded genetic algorithms. Different models of genetic operators ...
Francisco Herrera, Manuel Lozano, José L. V
Added 21 Dec 2010
Updated 21 Dec 2010
Type Journal
Year 1998
Where AIR
Authors Francisco Herrera, Manuel Lozano, José L. Verdegay
Comments (0)
books