Sciweavers

Share
ICNC
2005
Springer

A Time-Series Decomposed Model of Network Traffic

9 years 1 months ago
A Time-Series Decomposed Model of Network Traffic
: Traffic behavior in a large-scale network can be viewed as a complicated non-linear system, so it is very difficult to describe the long-term network traffic behavior in a large-scale network. In this paper, according to the non-linear character of network traffic, the time series of network traffic is decomposed into trend component, period component, mutation component and random component by different mathematical tools. So the complicated traffic can be modeled with these four simpler sub-series tools. In order to check the decomposed model, the long-term traffic behavior of the CERNET backbone network is analyzed by means of the decomposed network traffic. The results are compared with the ones of ARIMA model. According to the autocorrelation function value and predicting error function, the compounded model can get higher error precision to describe the long-term traffic behavior.
Guang Cheng, Jian Gong, Wei Ding 0001
Added 27 Jun 2010
Updated 27 Jun 2010
Type Conference
Year 2005
Where ICNC
Authors Guang Cheng, Jian Gong, Wei Ding 0001
Comments (0)
books