Sciweavers

Share
CVPR
2006
IEEE

Ultrasound-Specific Segmentation via Decorrelation and Statistical Region-Based Active Contours

8 years 11 months ago
Ultrasound-Specific Segmentation via Decorrelation and Statistical Region-Based Active Contours
Segmentation of ultrasound images is often a very challenging task due to speckle noise that contaminates the image. It is well known that speckle noise exhibits an asymmetric distribution as well as significant spatial correlation. Since these attributes can be difficult to model, many previous ultrasound segmentation methods oversimplify the problem by assuming that the noise is white and/or Gaussian, resulting in generic approaches that are actually more suitable to MR and X-ray segmentation than ultrasound. Unlike these methods, in this paper we present an ultrasound-specific segmentation approach that first decorrelates the image, and then performs segmentation on the whitened result using statistical region-based active contours. In particular, we design a gradient ascent flow that evolves the active contours to maximize a log likelihood functional based on the Fisher-Tippett distribution. We present experimental results that demonstrate the effectiveness of our method.
Gregory G. Slabaugh, Gozde B. Unal, Tong Fang, Mic
Added 22 Aug 2010
Updated 22 Aug 2010
Type Conference
Year 2006
Where CVPR
Authors Gregory G. Slabaugh, Gozde B. Unal, Tong Fang, Michael Wels
Comments (0)
books