URES : an Unsupervised Web Relation Extraction System

11 years 7 months ago
URES : an Unsupervised Web Relation Extraction System
Most information extraction systems either use hand written extraction patterns or use a machine learning algorithm that is trained on a manually annotated corpus. Both of these approaches require massive human effort and hence prevent information extraction from becoming more widely applicable. In this paper we present URES (Unsupervised Relation Extraction System), which extracts relations from the Web in a totally unsupervised way. It takes as input the descriptions of the target relations, which include the names of the predicates, the types of their attributes, and several seed instances of the relations. Then the system downloads from the Web a large collection of pages that are likely to contain instances of the target relations. From those pages, utilizing the known seed instances, the system learns the relation patterns, which are then used for extraction. We present several experiments in which we learn patterns and extract instances of a set of several common IE relations, ...
Binyamin Rosenfeld, Ronen Feldman
Added 30 Oct 2010
Updated 30 Oct 2010
Type Conference
Year 2006
Where ACL
Authors Binyamin Rosenfeld, Ronen Feldman
Comments (0)