Sciweavers
Register
Login
Explore
Publications
Books
Software
Tutorials
Presentations
Lectures Notes
Datasets
Labs
Conferences
Community
Upcoming
Conferences
Top Ranked Papers
Most Viewed Conferences
Conferences by Acronym
Conferences by Subject
Conferences by Year
Tools
Sci2ools
International Keyboard
Graphical Social Symbols
CSS3 Style Generator
OCR
Web Page to Image
Web Page to PDF
Merge PDF
Split PDF
Latex Equation Editor
Extract Images from PDF
Convert JPEG to PS
Convert Latex to Word
Convert Word to PDF
Image Converter
PDF Converter
Community
Sciweavers
About
Request Feature
Report Bug
Terms of Use
Privacy Policy
Cookies
Contact
Share
➚
Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Pinyin
i2Cantonese
i2Cangjie
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools
2
click to vote
CIKM
2004
Springer
favorite
Email
discuss
report
86
views
Information Technology
»
more
CIKM 2004
»
Using relevance feedback to detect misuse for information retrieval systems
12 years 1 months ago
Download
ir.iit.edu
Ling Ma, Nazli Goharian
Real-time Traffic
CIKM 2004
|
claim paper
Related Content
»
Misuse detection for information retrieval systems
»
Interactive ContentBased Retrieval in Video Databases Using Fuzzy Classification and Relev...
»
ContentOriented Relevance Feedback in XMLIR Using the Garnata Information Retrieval System
»
Detecting Document Genre for Personalization of Information Retrieval
»
Music Information Retrieval Using a GAbased Relevance Feedback
»
MUSE A ContentBased Image Search and Retrieval System Using Relevance Feedback
»
Learning to rank relevant and novel documents through user feedback
»
Fuzzy relevance feedback in contentbased image retrieval systems using radial basis functi...
»
AmharicEnglish Information Retrieval with Pseudo Relevance Feedback
more »
Post Info
More Details (n/a)
Added
01 Jul 2010
Updated
01 Jul 2010
Type
Conference
Year
2004
Where
CIKM
Authors
Ling Ma, Nazli Goharian
Comments
(0)
Researcher Info
Information Technology Study Group
Computer Vision