Sciweavers

Share
DAM
2008

On the variance of Shannon products of graphs

9 years 10 months ago
On the variance of Shannon products of graphs
We study the combinatorial problem of finding an arrangement of distinct integers into the ddimensional N-cube so that the maximal variance of the numbers on each -dimensional section is minimized. Our main tool is an inequality on the Laplacian of a Shannon product of graphs, which might be a subject of independent interest. We describe applications of the inequality to multiple description scalar quantizers (MDSQ), to getting bounds on the bandwidth of products of graphs, and to balanced edge-colorings of regular, d-uniform, d-partite hypergraphs.
József Balogh, Clifford D. Smyth
Added 10 Dec 2010
Updated 10 Dec 2010
Type Journal
Year 2008
Where DAM
Authors József Balogh, Clifford D. Smyth
Comments (0)
books