Sciweavers

Share
VDA
2010

Visual discovery in multivariate binary data

10 years 4 days ago
Visual discovery in multivariate binary data
This paper presents the concept of Monotone Boolean Function Visual Analytics (MBFVA) and its application to the medical domain. The medical application is concerned with discovering breast cancer diagnostic rules (i) interactively with a radiologist, (ii) analytically with data mining algorithms, and (iii) visually. The coordinated visualization of these rules opens an opportunity to coordinate the rules, and to come up with rules that are meaningful for the expert in the field, and are confirmed with the database. This paper shows how to represent and visualize binary multivariate data in 2-D and 3-D. This representation preserves the structural relations that exist in multivariate data. It creates a new opportunity to guide the visual discovery of unknown patterns in the data. In particular, the structural representation allows us to convert a complex border between the patterns in multidimensional space into visual 2-D and 3-D forms. This decreases the information overload on the ...
Boris Kovalerchuk, Florian Delizy, Logan Riggs, Ev
Added 30 Sep 2010
Updated 30 Sep 2010
Type Conference
Year 2010
Where VDA
Authors Boris Kovalerchuk, Florian Delizy, Logan Riggs, Evgenii Vityaev
Comments (0)
books