Sciweavers

Share
ICPR
2000
IEEE

Wavelet Based Texture Classification

8 years 10 months ago
Wavelet Based Texture Classification
Textures are one of the basic features in visual searching and computational vision. In the literature, most of the attention has been focussed on the texture features with minimal consideration of the noise models. In this paper we investigated the problem of texture classification from a maximum likelihood perspective. We took into account the texture model, the noise distribution, and the inter-dependence of the texture features. Our investigation showed that the real noise distribution is closer to an Exponential than a Gaussian distribution, and that the L1 metric has a better retrieval rate than L2. We also proposed the Cauchy metric as an alternative for both the L1 and L2 metrics. Furthermore, we provided a direct method for deriving an optimal distortion measure from the real noise distribution, which experimentally provides consistently improved results over the other metrics. We conclude with results and discussions on an international texture database.
Nicu Sebe, Michael S. Lew
Added 25 Aug 2010
Updated 25 Aug 2010
Type Conference
Year 2000
Where ICPR
Authors Nicu Sebe, Michael S. Lew
Comments (0)
books