Join Our Newsletter

Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Pinyin
i2Cantonese
i2Cangjie
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

COCO

2009

Springer

2009

Springer

—A simple averaging argument shows that given a randomized algorithm A and a function f such that for every input x, Pr[A(x) = f(x)] ≥ 1−ρ (where the probability is over the coin tosses of A), there exists a nonuniform deterministic algorithm B “of roughly the same complexity” such that Pr[B(x) = f(x)] ≥ 1 − ρ (where the probability is over a uniformly chosen input x). This implication is often referred to as “the easy direction of Yao’s lemma” and can be thought of as “weak derandomization” in the sense that B is deterministic but only succeeds on most inputs. The implication follows as there exists a ﬁxed value r for the random coins of A such that “hardwiring r into A” produces a deterministic algorithm B. However, this argument does not give a way to explicitly construct B. In this paper we consider the task of proving uniform versions of the implication above. That is, how to explicitly construct a deterministic algorithm B when given a randomized a...

Added |
26 May 2010 |

Updated |
26 May 2010 |

Type |
Conference |

Year |
2009 |

Where |
COCO |

Authors |
Ronen Shaltiel |

Comments (0)