Join Our Newsletter

Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Pinyin
i2Cantonese
i2Cangjie
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

RSA

2010

2010

We study here the spectra of random lifts of graphs. Let G be a ﬁnite connected graph, and let the inﬁnite tree T be its universal cover space. If λ1 and ρ are the spectral radii of G and T respectively, then, as shown by Friedman [Fri03], in almost every n-lift H of G, all “new” eigenvalues of H are ≤ O λ 1/2 1 ρ1/2 . Here we improve this bound to O λ 1/3 1 ρ2/3 . It is conjectured in [Fri03] that the statement holds with the bound ρ + o(1) which, if true, is tight by [Gre95]. For G a bouquet with d/2 loops, our arguments yield a simple proof that almost every d-regular graph has second eigenvalue O(d2/3 ). For the bouquet, Friedman [Fri] has famously proved the (nearly?) optimal bound of 2 √ d − 1 + o(1). Central to our work is a new analysis of formal words. Let w be a formal word in letters g±1 1 , . . . , g±1 k . The word map associated with w maps the permutations σ1, . . ., σk ∈ Sn to the permutation obtained by replacing for each i, every occurrence ...

Added |
30 Jan 2011 |

Updated |
30 Jan 2011 |

Type |
Journal |

Year |
2010 |

Where |
RSA |

Authors |
Nati Linial, Doron Puder |

Comments (0)