Sciweavers

Share
EMNLP
2010

Word Sense Induction Disambiguation Using Hierarchical Random Graphs

9 years 1 months ago
Word Sense Induction Disambiguation Using Hierarchical Random Graphs
Graph-based methods have gained attention in many areas of Natural Language Processing (NLP) including Word Sense Disambiguation (WSD), text summarization, keyword extraction and others. Most of the work in these areas formulate their problem in a graph-based setting and apply unsupervised graph clustering to obtain a set of clusters. Recent studies suggest that graphs often exhibit a hierarchical structure that goes beyond simple flat clustering. This paper presents an unsupervised method for inferring the hierarchical grouping of the senses of a polysemous word. The inferred hierarchical structures are applied to the problem of word sense disambiguation, where we show that our method performs significantly better than traditional graph-based methods and agglomerative clustering yielding improvements over state-of-the-art WSD systems based on sense induction.
Ioannis P. Klapaftis, Suresh Manandhar
Added 11 Feb 2011
Updated 11 Feb 2011
Type Journal
Year 2010
Where EMNLP
Authors Ioannis P. Klapaftis, Suresh Manandhar
Comments (0)
books