Sciweavers

Share
8 search results - page 1 / 2
» A New Extension of Kernel Principal Component Analysis for F...
Sort
View
CVPR
2008
IEEE
11 years 4 months ago
Parameterized Kernel Principal Component Analysis: Theory and applications to supervised and unsupervised image alignment
Parameterized Appearance Models (PAMs) (e.g. eigentracking, active appearance models, morphable models) use Principal Component Analysis (PCA) to model the shape and appearance of...
Fernando De la Torre, Minh Hoai Nguyen
ICML
2003
IEEE
11 years 3 months ago
Kernel PLS-SVC for Linear and Nonlinear Classification
A new method for classification is proposed. This is based on kernel orthonormalized partial least squares (PLS) dimensionality reduction of the original data space followed by a ...
Roman Rosipal, Leonard J. Trejo, Bryan Matthews
PAMI
2012
8 years 5 months ago
A Least-Squares Framework for Component Analysis
— Over the last century, Component Analysis (CA) methods such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Canonical Correlation Analysis (CCA), Lap...
Fernando De la Torre
PAMI
2010
192views more  PAMI 2010»
10 years 1 months ago
Multiway Spectral Clustering with Out-of-Sample Extensions through Weighted Kernel PCA
—A new formulation for multiway spectral clustering is proposed. This method corresponds to a weighted kernel principal component analysis (PCA) approach based on primal-dual lea...
Carlos Alzate, Johan A. K. Suykens
ICPR
2006
IEEE
11 years 3 months ago
Dimensionality Reduction with Adaptive Kernels
1 A kernel determines the inductive bias of a learning algorithm on a specific data set, and it is beneficial to design specific kernel for a given data set. In this work, we propo...
Shuicheng Yan, Xiaoou Tang
books