Sciweavers

Share
83 search results - page 2 / 17
» Chess Neighborhoods, Function Combination, and Reinforcement...
Sort
View
ESANN
2006
8 years 9 months ago
Reducing policy degradation in neuro-dynamic programming
We focus on neuro-dynamic programming methods to learn state-action value functions and outline some of the inherent problems to be faced, when performing reinforcement learning in...
Thomas Gabel, Martin Riedmiller
ESANN
2008
8 years 10 months ago
Learning to play Tetris applying reinforcement learning methods
In this paper the application of reinforcement learning to Tetris is investigated, particulary the idea of temporal difference learning is applied to estimate the state value funct...
Alexander Groß, Jan Friedland, Friedhelm Sch...
ICML
2006
IEEE
9 years 2 months ago
Automatic basis function construction for approximate dynamic programming and reinforcement learning
We address the problem of automatically constructing basis functions for linear approximation of the value function of a Markov Decision Process (MDP). Our work builds on results ...
Philipp W. Keller, Shie Mannor, Doina Precup
ATAL
2010
Springer
8 years 9 months ago
Combining manual feedback with subsequent MDP reward signals for reinforcement learning
As learning agents move from research labs to the real world, it is increasingly important that human users, including those without programming skills, be able to teach agents de...
W. Bradley Knox, Peter Stone
ICML
2007
IEEE
9 years 9 months ago
Tracking value function dynamics to improve reinforcement learning with piecewise linear function approximation
Reinforcement learning algorithms can become unstable when combined with linear function approximation. Algorithms that minimize the mean-square Bellman error are guaranteed to co...
Chee Wee Phua, Robert Fitch
books