Sciweavers

Share
13 search results - page 1 / 3
» Laplace maximum margin Markov networks
Sort
View
ICML
2008
IEEE
12 years 6 months ago
Laplace maximum margin Markov networks
We propose Laplace max-margin Markov networks (LapM3 N), and a general class of Bayesian M3 N (BM3 N) of which the LapM3 N is a special case with sparse structural bias, for robus...
Jun Zhu, Eric P. Xing, Bo Zhang
NIPS
2003
11 years 6 months ago
Max-Margin Markov Networks
In typical classiļ¬cation tasks, we seek a function which assigns a label to a single object. Kernel-based approaches, such as support vector machines (SVMs), which maximize the ...
Benjamin Taskar, Carlos Guestrin, Daphne Koller
NIPS
2008
11 years 6 months ago
Partially Observed Maximum Entropy Discrimination Markov Networks
Learning graphical models with hidden variables can offer semantic insights to complex data and lead to salient structured predictors without relying on expensive, sometime unatta...
Jun Zhu, Eric P. Xing, Bo Zhang
KDD
2009
ACM
192views Data Mining» more  KDD 2009»
12 years 1 days ago
Primal sparse Max-margin Markov networks
Max-margin Markov networks (M3 N) have shown great promise in structured prediction and relational learning. Due to the KKT conditions, the M3 N enjoys dual sparsity. However, the...
Jun Zhu, Eric P. Xing, Bo Zhang
JMLR
2008
209views more  JMLR 2008»
11 years 5 months ago
Bayesian Inference and Optimal Design for the Sparse Linear Model
The linear model with sparsity-favouring prior on the coefficients has important applications in many different domains. In machine learning, most methods to date search for maxim...
Matthias W. Seeger
books