Sciweavers

Share
223 search results - page 1 / 45
» Learning to Classify Text from Labeled and Unlabeled Documen...
Sort
View
AAAI
1998
9 years 5 months ago
Learning to Classify Text from Labeled and Unlabeled Documents
In many important text classification problems, acquiring class labels for training documents is costly, while gathering large quantities of unlabeled data is cheap. This paper sh...
Kamal Nigam, Andrew McCallum, Sebastian Thrun, Tom...
IJCAI
2003
9 years 5 months ago
Learning to Classify Texts Using Positive and Unlabeled Data
In traditional text classification, a classifier is built using labeled training documents of every class. This paper studies a different problem. Given a set P of documents of a ...
Xiaoli Li, Bing Liu
ML
2000
ACM
124views Machine Learning» more  ML 2000»
9 years 3 months ago
Text Classification from Labeled and Unlabeled Documents using EM
This paper shows that the accuracy of learned text classifiers can be improved by augmenting a small number of labeled training documents with a large pool of unlabeled documents. ...
Kamal Nigam, Andrew McCallum, Sebastian Thrun, Tom...
ICML
1998
IEEE
10 years 4 months ago
Employing EM and Pool-Based Active Learning for Text Classification
This paper shows how a text classifier's need for labeled training documents can be reduced by taking advantage of a large pool of unlabeled documents. We modify the Query-by...
Andrew McCallum, Kamal Nigam
ECIR
2009
Springer
9 years 1 months ago
Active Learning Strategies for Multi-Label Text Classification
Abstract. Active learning refers to the task of devising a ranking function that, given a classifier trained from relatively few training examples, ranks a set of additional unlabe...
Andrea Esuli, Fabrizio Sebastiani
books